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Abstract
Tuberculosis (TB) continues to pose a significant global health threat, especially in low-resource regions where timely
diagnosis is often challenging. Recent advancements in Al and deep learning have shown great promise in automating
disease detection through analysis of chest X-ray images, a widely used and cost-effective diagnostic method. This study
employed a deep convolutional neural network (CNN) specially VGG16 architecture—pre-trained on the ImageNet
dataset—to automatically classify chest radiographs as TB or normal. The model was evaluated using standard
performance metrics and achieved an impressive accuracy of 99.93%, demonstrating strong capability in identifying TB
from X-ray images. To promote transparency and clinical trust, integrated gradients was incorporated as an explainable
Al technique. Integrated gradients visualizations pinpoint the lung regions most influential to the model’s predictions,
enabling healthcare professionals to better understand and validate the AI’s decisions. Ultimately, these results presented
a promising, interpretable, and scalable approach for automated TB screening—particularly valuable in resource-limited
healthcare settings—and support the potential integration of such systems into clinical decision support tools.
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1. Introduction

Tuberculosis (TB) remains one of the leading global health challenges, contributing
significantly to illness and death. It is caused by the bacterium Mycobacterium tuberculosis,
which released into the air by infected individuals. Roughly 25% of the global population shows
immune system signs of exposure to the infection. This exposure may stay inactive or
eventually develop into a symptomatic illness. Individuals who carry the bacteria without
showing symptoms are classified as having latent TB, or (TB infection). In contrast, those who
develop symptoms and clinical signs are said to have TB disease [1]. TB remains a major global
health concern, affecting millions each year. Prompt diagnosis is essential for effective
treatment and limiting transmission. Early detection not only improves outcomes and prevents
complications but also helps contain the disease by identifying and isolating cases. However,
delays in diagnosis persist due to limited access to testing, socio-economic challenges, low
awareness, and the disease's often nonspecific symptoms. Although diagnostic tools have
improved in accuracy, overcoming barriers such as stigma and healthcare access is still key to
controlling TB effectively [2]. While the lungs are most frequently involved in TB (pulmonary
TB), the infection can also spread to other areas such as the pleura, lymph nodes, skin, bones,
genitourinary system, abdomen, joints, and the meninges — a form referred to as
extrapulmonary TB [3]. Active TB is diagnosed using chest radiographs along with microscopic
analysis and culture of bodily fluids. In contrast, latent TB is identified through either a
tuberculin skin test or specific blood-based assays [4]. Traditional chest X-rays remain the
primary tool for screening, diagnosing, and monitoring treatment in both pulmonary and
extrapulmonary tuberculosis. However, this longstanding method has limitations in accuracy.
Recent advances, such as digital radiography and computer-aided diagnosis (CAD) have
transformed TB detection. Over the past few years, innovations including Al and machine
learning have further enhanced diagnostic processes by improving data management and image
analysis. These technologies are increasingly being applied in medicine, offering significant
potential for enhancing TB diagnosis and care [5]. For many years, medical image analysis and
interpretation have been carried out by humans. However, the rapid progress of Al has led to a
growing adoption of computer-assisted tools in healthcare to enhance diagnostic accuracy and
efficiency. These technologies enable real-time disease prediction and detailed evaluation of
treatment alternatives, while reducing issues like inconsistencies between different observers,
errors due to variability in disease presentations, and the fatigue experienced by human
specialists [6].

CAD systems use Al to analyze radiological images and address the shortage of radiologists,
particularly in developing regions. These systems are commonly employed to detect various
diseases from medical images, with machine learning and deep learning being the primary Al
techniques used for analyzing chest X-rays. The rapid growth of medical imaging data has made
manual interpretation increasingly challenging for radiologists. When bacteriological tests are
inconclusive, radiology—and specifically CAD analysis of chest X-rays—plays a critical role
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in TB diagnosis. Deep learning, especially through deep CNNs, has become a leading approach
in radiology, enabling effective feature extraction and accurate classification of chest X-rays as
normal or abnormal for TB detection [7]. Understanding the reasoning behind a deep learning
model’s decision, especially in disease diagnosis, is crucial for assessing its trustworthiness.
Many doctors and radiologists are hesitant to rely on deep learning models because they cannot
observe what the network is focusing on to generate predictions. This limitation, often called
the black box problem, arises because the internal processes within the hidden layers are not
transparent. When the connection between inputs and outputs is unclear, even a single incorrect
prediction can have serious, potentially fatal consequences. Visualization methods help by
revealing whether the model is concentrating on the relevant regions of X-ray images or
mistakenly using irrelevant information for its classification [8].

This work focuses on applying deep learning methods to detect TB from chest X-ray images,
with particular attention given to understanding how the model reaches its decisions. In
conjunction with achieving strong diagnostic accuracy, explainability techniques are
incorporated to reveal the image regions and features that influence predictions. By making the
model’s behavior more transparent, the study aims to strengthen clinical confidence, improve
interpretability, and support the practical use of Al-based TB diagnostic systems in routine
healthcare practice.

2. Related works

Numerous studies have explored the use of Al, especially deep learning, to enhance TB
detection and diagnosis using chest X-ray images. Alongside these efforts, researchers have
developed approaches to make these models more interpretable, with certain investigations
concentrating specifically on explanation methods tailored to TB detection.

Mirugwe et al. [9] evaluated six CNN architectures (VGG16, VGG19, ResNet50/101/152, and
Inception-ResNet-V2) for classifying chest X-ray images as normal or TB. Using a dataset of
4,200 images (700 TB-positive, 3500 normal), VGG16 achieved the best performance, reaching
99.4% accuracy, while requiring fewer computational resources. The study concluded that
simpler architectures like VGG16 provide an optimal balance between diagnostic accuracy and
computational efficiency for TB detection in chest X-ray images, emphasizing task-specific
model selection for clinical applications.

In addition, Sharma et al. [10] proposed a deep-learning framework for TB detection in chest
X-ray images that integrates lung segmentation, classification, and visual explainability. A
UNet model was first trained on 704 chest X-rays to segment lung regions. The trained UNet
was then applied to 1400 TB and normal images from the NIAID TB portal dataset to extract
lung areas. For classification, an Xception model was used to distinguish TB from normal cases
based on the segmented lungs. Model interpretability was enhanced using Grad-CAM heatmaps
to visualize TB-related abnormalities from a radiological perspective. The Xception classifier
achieved 99.29% accuracy.

Moreover, Rahman et al. [11] proposed a comprehensive deep-learning framework for reliable
TB detection from chest X-ray images by integrating image preprocessing, data augmentation,
lung segmentation, and classification. A balanced dataset of 7000 chest X-rays (3500 TB and
3500 normal) was constructed from multiple public databases. Nine pre-trained CNN models
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(ResNet18, ResNet50, ResNetl01, ChexNet, InceptionV3, VGG19, DenseNet201,
SqueezeNet, and MobileNet) were evaluated using transfer learning. Three experiments were
conducted: lung segmentation using two U-Net models, classification using full X-ray images,
and classification using segmented lung regions. ChexNet achieved the best performance on
whole X-ray images, with an accuracy of 96.47%. However, classification using segmented
lung images outperformed full-image classification, where DenseNet201 achieved 98.6%
accuracy and strong performance across all metrics. Visualization techniques confirmed that
CNNs primarily learned from lung regions, explaining the improved results.

Furthermore, Noviandy et al. [12] addressed the challenge of TB diagnosis in low-resource
settings by evaluating lightweight and explainable deep learning models for chest X-ray
analysis. Three lightweight models—ShuftleNetV2, SqueezeNet, and MobileNetV3—were
assessed for binary TB classification using a local dataset of 3008 X-ray images. Transfer
learning was employed to enhance performance, and Grad-CAM was used to provide visual
explanations of model decisions. MobileNetV3 and ShuffleNetV2 achieved perfect
classification results, each attaining 100% accuracy.

As well, Maheswari et al. [13] proposed a lightweight and interpretable shallow CNN for
automated TB screening from chest X-ray images. In contrast to very deep CNN architectures,
the study emphasized a simpler model to enhance diagnostic transparency and clinical
applicability. The proposed shallow-CNN comprised four convolution—max pooling layers,
with hyperparameters optimized using Bayesian optimization. The model achieved accuracy of
95%. To further enhance model explainability, CAM and LIME were employed and compared
with a state-of-the-art pre-trained DenseNet model.

Lastly, Ozkurt [14] investigated TB diagnosis using deep learning with a strong emphasis on
explainable Al to improve trust and reliability in clinical applications. The dataset comprised
chest X-ray images of both TB-positive and normal cases, including 700 publicly available TB
images, an additional 2800 TB images accessible via the NIAID TB portal, and 3500 normal
images. The proposed CNN architecture consisted of three convolutional layers was used for
binary TB classification. Explainable Al techniques such as SHAP and LIME were applied to
interpret model predictions and identify influential image features.

The previous studies consistently demonstrate that deep learning—based approaches can achieve
high accuracy in TB detection from chest X-ray images. The findings highlight that
incorporating transfer learning, and data-efficient architectures significantly improves
diagnostic performance, while lightweight and shallow CNNs can rival deeper models with
reduced computational cost. Moreover, explainable Al techniques such as Grad-CAM, CAM,
LIME, and SHAP play a crucial role in enhancing model transparency and clinical trust by
localizing TB-related abnormalities. Collectively, these works emphasize the importance of
balancing accuracy, efficiency, and interpretability to enable reliable and scalable Al-assisted
TB screening, particularly in resource-constrained healthcare settings.

This study utilizes an expanded dataset of 7208 chest X-ray images, created by merging two
separate sources, with data augmentation applied to enhance model performance. In addition to
improving diagnostic accuracy, an interpretability method—integrated gradients—is
implemented to provide clear insights into the model’s decision-making. The study aims to
achieve precise TB detection while emphasizing the importance of explanation techniques in
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building clinician trust and understanding, thereby enhancing the transparency, reliability, and
effectiveness of Al-driven TB screening tools.

3. Methodology

This study employed a deep learning approach to identify TB in chest X-ray scans, focusing on
making the results more understandable through integrated gradient technique. The process
involved categorizing the X-ray images into two groups: normal or TB. The key stages of this
approach are illustrated in Figure 1.

Dataset )
(X-Ray —> Pre- > Modn:al . M‘.} d.el L) Mo de.l > Visual
Images) processing Selection Training Evaluation Interpret

Figure 1. Method steps

3.1. Dataset and preprocessing

The dataset used in this study is a combination of two sources. The first dataset, obtained from
Mendeley [15], contains 2494 chest X-ray images of TB patients and 514 normal chest X-ray
images. The second dataset was compiled by [13] and consists of a well-organized collection
of chest X-ray images—700 TB cases and 3500 normal cases—which is publicly available on
Kaggle [16]. These two datasets were merged to form the final dataset used in this study,
resulting in a total of 7208 images, comprising 3194 TB and 4014 normal images. Figure 2
illustrates sample images from the combined dataset, showing examples of both TB and normal
cases.

All 1mages were resized to a standardized resolution of 224 x 224 pixels and normalized.
Additionally, 20% of the dataset was set aside for testing purposes. To enhance model
generalization and reduce overfitting, augmentation techniques were applied during training.
Random horizontal flip was used to simulate variations in image orientation by flipping images
horizontally. Random rotation with a maximum angle of 10 degrees. Additionally, contrast
adjust employed introducing slight changes in image appearance that reflect real-world
variability in X-ray imaging conditions. Together, these augmentations increase dataset
diversity and improve the model’s robustness in clinical scenarios.
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Figure 2. Sample from dataset

3.2. Model training and evaluation

A pre-trained CNN based on the VGG architecture—specifically VGG16—was employed as
the backbone for feature extraction. The model was fine-tuned on the TB dataset, with its final
fully connected layers modified to perform binary classification between TB and normal
images.

VGG16 [17] is a deep CNN architecture consists of 16 weight layers, including 13
convolutional layers and 3 fully connected layers, followed by a softmax output layer. VGG16
is known for its simplicity and uniform architecture, using small 3x3 convolutional filters and
2x2 max-pooling layers throughout the network. VGG16 has been widely used in image
classification and transfer learning tasks due to its strong performance and ease of
implementation. Pre-trained versions of the model, especially those trained on the ImageNet
dataset, are commonly used as feature extractors in various computer vision applications.

The model was trained using the Cross-Entropy loss function and the Adam optimizer with a
learning rate of 0.0001. Training was conducted with a batch size of 16, and early stopping was
employed to prevent overfitting, halting the process after 15 epochs. The model's performance
was assessed on a separate, unseen test set using standard evaluation metrics to provide a
comprehensive understanding of its diagnostic effectiveness. Additionally, a confusion matrix
was generated to further analyze the classification results.

3.3. Explainability and visualization

To enhance interpretability, integrated gradients was used to visualize the regions in the chest
X-rays that influenced the model’s predictions.

Integrated Gradients [18] is an attribution method used to explain the predictions of deep
learning models. It works by quantifying the contribution of each input feature (such as pixels
in an image) to the model's output. The method involves computing the integral of the model’s
gradients as the input varies along a straight path from a baseline (often a black image or zero
input) to the actual input. This provides a more reliable and theoretically grounded explanation
compared to simple gradient-based methods, which can be noisy. The outputs were plotted in
three-panel layouts: the original X-ray, the attribution heatmap, and an overlay of both. These
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visualizations provided intuitive insights into model behavior and supported transparent

decision-making.

4. Results and Discussions
The performance of the model during training is illustrated in Figure 3, which displays the

training and validation accuracy and loss curves across epochs.
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Figure 3. Training curves

During the early stages of training, specifically between epochs 3 and 6, the model exhibits
signs of overfitting, as indicated by an increase in validation loss and a decrease in validation
accuracy, despite continued improvement in training performance. This suggests that the model
began memorizing the training data rather than learning patterns that generalize well to unseen
data. However, after epoch 6 or 7, both the training and validation loss curves steadily decline
and converge to low values, while accuracy for both sets rises to approximately 99%. This
convergence indicates that the model was able to recover from the initial overfitting phase and
ultimately generalize well. The final state—characterized by low validation loss and high
validation accuracy—demonstrates effective training and strong overall performance. The
model was evaluated on an unseen test set of chest X-ray images. The performance results are
summarized in Table 1, which presents the classification metrics of the trained model across

the two classes (Normal and TB).

Table 1 Classification performance on the test set
Accuracy Class Precision Recall F1-score Support
0.9993 Normal 0.9988 1.0000 0.9994 803
TB 1.0000 0.9984 0.9992 639

The model achieved an overall accuracy of 99.93%, indicating exceptional performance on the
test set. For the Normal class, the model attained a precision of 0.9988 and a recall of 1.0000,
resulting in an F1-score of 0.9994, with all 803 Normal cases correctly identified. For the TB
class, the model achieved a perfect precision of 1.0000 and a recall of 0.9984, leading to an F1-
score of 0.9992, based on 639 samples. These metrics suggest a near-perfect balance between
precision and recall for both classes, with minimal false positives and false negatives. The
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consistently high scores across all metrics demonstrate the model’s strong capability to
distinguish between TB and normal chest X-ray images, making it a reliable tool for automated
TB screening.

Figure 4 presents a confusion matrix, which quantifies the model's classification accuracy. It
clearly shows a high number of true positives and true negatives. Specifically, 803 normal cases
were correctly identified as normal (true negative), and 638 TB cases were correctly identified
as TB (true positive). Crucially, there are zero false positives (no normal cases misclassified as
TB) and only 1 false negative (one TB case misclassified as normal). This nearly perfect
confusion matrix signifies exceptional accuracy and precision in distinguishing between normal
and TB affected lungs.

Confusion Matrix

- BOO

700

BO0

True
MNormal

TB

Mormal TB
Predicted

Figure 4. Confusion matrix

Figure 5 illustrates the model's predictions on sample chest X-ray images, showing strong
performance in detecting TB cases, all of which were correctly classified with 100%
confidence. Among the normal cases, four were correctly identified, while one was
misclassified as TB with full confidence—indicating a false positive. This suggests the model
is highly sensitive to TB features but may occasionally over-predict TB in normal images.
Overall, the model demonstrates excellent accuracy, particularly in identifying TB, though
refinement is needed to reduce false positives in normal cases.
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True: Normal True: Normal True: Normal True: Normal True: Normal
Pred: TB Pred: Normal Pred: Normal Pred: Normal Pred: Normal
Normal: 0.00, TB: 1.00  Normal: 0.75, TB: 0.25 Normal: 0.86, TB: 0.14  Normal: 0.92, TB: 0.08 = Normal: 0.79, TB: 0.21

:

True: TB True: TB True: TB True: TB True: TB
Pred: TB Pred: TB Pred: TB Pred: TB Pred: TB
Normal: 0.00, TB: 1.00  Normal: 0.00, TB: 1.00  Normal: 0.00, TB: 1.00  Normal: 0.00, TB: 1.00  Normal: 0.00, TB: 1.00

Figure 5. Sample of predictions

Original Original Original Original Original

Attribution Attribution Attribution Attribution Attribution

True: TB | Pred: TB True: TB | Pred: TB True: TB | Pred: TB True: TB | Pred: TB True: TB | Pred: TB

Figure 6. Visualizing model decisions in TB detection

Figure 6 showcases five sets of chest X-rays, each consisting of an original image, an attribution
map, and a combined image displaying the true and predicted labels. All five examples
consistently show true predictions, indicating that the model correctly identified TB in all these
cases. The attribution maps, highlight the specific regions within the X-ray images that the
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model focused on when making its TB prediction. These maps reveal areas of high importance,
often corresponding to lung fields, where visual anomalies indicative of TB is likely present.
The overlaid images in the bottom row further emphasize these critical regions by visually
combining the original X-ray with the attribution heatmaps, providing a clear visual
representation of what the model deemed most relevant for its accurate diagnosis of TB. This
consistent and strong attribution to the lung areas across all five samples suggests that the model
effectively learned to identify key pathological features associated with TB.

5. Conclusion

This study presented an interpretable deep learning approach for the automated detection of TB
using chest X-ray images. By leveraging a CNN architecture alongside robust data
augmentation techniques, the proposed system demonstrates strong performance in
distinguishing between TB and normal cases. Beyond predictive accuracy, this work also
emphasizes model transparency by integrating the integrated gradient technique to provide
visual explanations for the network’s decisions. This is especially critical in medical imaging
applications, where clinical trust and accountability are essential. Integrated gradient
visualizations enabled clear localization of abnormal regions typically associated with TB
pathology, offering clinicians an interpretable layer that supports diagnostic confidence and
validation. The model’s strong performance and explainability highlight the practical potential
of deep learning for TB screening, especially in settings with limited radiology resources.
However, challenges like dataset variability and the need for broader validation remain. This
study underscores the importance of combining accurate Al with explainable methods to
improve early diagnosis and foster trust, advancing transparent and equitable Al-driven
healthcare.
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