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Abstract 

Tuberculosis (TB) continues to pose a significant global health threat, especially in low-resource regions where timely 

diagnosis is often challenging. Recent advancements in AI and deep learning have shown great promise in automating 

disease detection through analysis of chest X-ray images, a widely used and cost-effective diagnostic method. This study 

employed a deep convolutional neural network (CNN) specially VGG16 architecture—pre-trained on the ImageNet 

dataset—to automatically classify chest radiographs as TB or normal. The model was evaluated using standard 

performance metrics and achieved an impressive accuracy of 99.93%, demonstrating strong capability in identifying TB 

from X-ray images. To promote transparency and clinical trust, integrated gradients was incorporated as an explainable 

AI technique. Integrated gradients visualizations pinpoint the lung regions most influential to the model’s predictions, 

enabling healthcare professionals to better understand and validate the AI’s decisions. Ultimately, these results presented 

a promising, interpretable, and scalable approach for automated TB screening—particularly valuable in resource-limited 

healthcare settings—and support the potential integration of such systems into clinical decision support tools. 
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 الملخص 
السل يشكل تهديدا كبيرا للصحة العالمية، لا سيما في المناطق ذات الموارد المنخفضة حيث  مرض  لا يزال  

غالبا ما يكون التشخيص في الوقت المناسب صعبا. أظهرت التطورات الحديثة في الذكاء الاصطناعي  
للصدر،  والتعلم العميق وعدا كبيرا في أتمتة الكشف عن الأمراض من خلال تحليل صور الأشعة السينية  

هذه الدراسة استخدمت  في  وهي طريقة تشخيصية مستخدمة على نطاق واسع وفعالة من حيث التكلفة.  
لتصنيف  - (ImageNet)( مدربة مسبقا على مجموعة بيانات  VGG16شبكة عصبية تلافيفية عميقة )

أنها تلقائيا على  الشعاعية للصدر  النموذج باستخدام مسليمة أو    مصابة  الصور  تقييم  تم  الأداء  .  قاييس 
قوية في تحديد مرض السل من صور  ال   تهامما يدل على قدر   ٪،99.93بلغت    عاليةالقياسية وحقق دقة  

كأسلوب ذكاء اصطناعي   المتكاملة  التدرجات  تم دمج  السريرية،  والثقة  الشفافية  لتعزيز  السينية.  الأشعة 
يمكن تفسيره. تحدد تصورات التدرجات المتكاملة مناطق الرئة الأكثر تأثيرا على تنبؤات النموذج، مما يمكن  

هم قرارات الذكاء الاصطناعي والتحقق منها بشكل أفضل. في نهاية  المتخصصين في الرعاية الصحية من ف
وهو ذو قيمة    - المطاف، قدمت هذه النتائج نهجا واعدا وقابل للتفسير وقابل للتطوير لفحص السل الآلي  
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ودعم التكامل المحتمل لهذه الأنظمة في أدوات دعم    خاصة في إعدادات الرعاية الصحية المحدودة الموارد 
 القرار السريري. 

 . السل مرض لتفسير، ا، شبكة عصبية تلافيفية التدرجات المتكاملة، الكلمات المفتاحية:
1. Introduction 

Tuberculosis (TB) remains one of the leading global health challenges, contributing 

significantly to illness and death. It is caused by the bacterium Mycobacterium tuberculosis, 

which released into the air by infected individuals. Roughly 25% of the global population shows 

immune system signs of exposure to the infection. This exposure may stay inactive or 

eventually develop into a symptomatic illness. Individuals who carry the bacteria without 

showing symptoms are classified as having latent TB, or (TB infection). In contrast, those who 

develop symptoms and clinical signs are said to have TB disease [1]. TB remains a major global 

health concern, affecting millions each year. Prompt diagnosis is essential for effective 

treatment and limiting transmission. Early detection not only improves outcomes and prevents 

complications but also helps contain the disease by identifying and isolating cases. However, 

delays in diagnosis persist due to limited access to testing, socio-economic challenges, low 

awareness, and the disease's often nonspecific symptoms. Although diagnostic tools have 

improved in accuracy, overcoming barriers such as stigma and healthcare access is still key to 

controlling TB effectively [2]. While the lungs are most frequently involved in TB (pulmonary 

TB), the infection can also spread to other areas such as the pleura, lymph nodes, skin, bones, 

genitourinary system, abdomen, joints, and the meninges — a form referred to as 

extrapulmonary TB [3]. Active TB is diagnosed using chest radiographs along with microscopic 

analysis and culture of bodily fluids. In contrast, latent TB is identified through either a 

tuberculin skin test or specific blood-based assays [4]. Traditional chest X-rays remain the 

primary tool for screening, diagnosing, and monitoring treatment in both pulmonary and 

extrapulmonary tuberculosis. However, this longstanding method has limitations in accuracy. 

Recent advances, such as digital radiography and computer-aided diagnosis (CAD) have 

transformed TB detection. Over the past few years, innovations including AI and machine 

learning have further enhanced diagnostic processes by improving data management and image 

analysis. These technologies are increasingly being applied in medicine, offering significant 

potential for enhancing TB diagnosis and care [5]. For many years, medical image analysis and 

interpretation have been carried out by humans. However, the rapid progress of AI has led to a 

growing adoption of computer-assisted tools in healthcare to enhance diagnostic accuracy and 

efficiency. These technologies enable real-time disease prediction and detailed evaluation of 

treatment alternatives, while reducing issues like inconsistencies between different observers, 

errors due to variability in disease presentations, and the fatigue experienced by human 

specialists [6].  

CAD systems use AI to analyze radiological images and address the shortage of radiologists, 

particularly in developing regions. These systems are commonly employed to detect various 

diseases from medical images, with machine learning and deep learning being the primary AI 

techniques used for analyzing chest X-rays. The rapid growth of medical imaging data has made 

manual interpretation increasingly challenging for radiologists. When bacteriological tests are 

inconclusive, radiology—and specifically CAD analysis of chest X-rays—plays a critical role 
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in TB diagnosis. Deep learning, especially through deep CNNs, has become a leading approach 

in radiology, enabling effective feature extraction and accurate classification of chest X-rays as 

normal or abnormal for TB detection [7]. Understanding the reasoning behind a deep learning 

model’s decision, especially in disease diagnosis, is crucial for assessing its trustworthiness. 

Many doctors and radiologists are hesitant to rely on deep learning models because they cannot 

observe what the network is focusing on to generate predictions. This limitation, often called 

the black box problem, arises because the internal processes within the hidden layers are not 

transparent. When the connection between inputs and outputs is unclear, even a single incorrect 

prediction can have serious, potentially fatal consequences. Visualization methods help by 

revealing whether the model is concentrating on the relevant regions of X-ray images or 

mistakenly using irrelevant information for its classification [8]. 

This work focuses on applying deep learning methods to detect TB from chest X-ray images, 

with particular attention given to understanding how the model reaches its decisions. In 

conjunction with achieving strong diagnostic accuracy, explainability techniques are 

incorporated to reveal the image regions and features that influence predictions. By making the 

model’s behavior more transparent, the study aims to strengthen clinical confidence, improve 

interpretability, and support the practical use of AI-based TB diagnostic systems in routine 

healthcare practice. 

 

2. Related works 

 

Numerous studies have explored the use of AI, especially deep learning, to enhance TB 

detection and diagnosis using chest X-ray images. Alongside these efforts, researchers have 

developed approaches to make these models more interpretable, with certain investigations 

concentrating specifically on explanation methods tailored to TB detection. 

Mirugwe et al. [9] evaluated six CNN architectures (VGG16, VGG19, ResNet50/101/152, and 

Inception-ResNet-V2) for classifying chest X-ray images as normal or TB. Using a dataset of 

4,200 images (700 TB-positive, 3500 normal), VGG16 achieved the best performance, reaching 

99.4% accuracy, while requiring fewer computational resources. The study concluded that 

simpler architectures like VGG16 provide an optimal balance between diagnostic accuracy and 

computational efficiency for TB detection in chest X-ray images, emphasizing task-specific 

model selection for clinical applications. 

In addition, Sharma et al. [10] proposed a deep-learning framework for TB detection in chest 

X-ray images that integrates lung segmentation, classification, and visual explainability.  A 

UNet model was first trained on 704 chest X-rays to segment lung regions. The trained UNet 

was then applied to 1400 TB and normal images from the NIAID TB portal dataset to extract 

lung areas. For classification, an Xception model was used to distinguish TB from normal cases 

based on the segmented lungs. Model interpretability was enhanced using Grad-CAM heatmaps 

to visualize TB-related abnormalities from a radiological perspective. The Xception classifier 

achieved 99.29% accuracy. 

Moreover, Rahman et al. [11] proposed a comprehensive deep-learning framework for reliable 

TB detection from chest X-ray images by integrating image preprocessing, data augmentation, 

lung segmentation, and classification. A balanced dataset of 7000 chest X-rays (3500 TB and 

3500 normal) was constructed from multiple public databases. Nine pre-trained CNN models 
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(ResNet18, ResNet50, ResNet101, ChexNet, InceptionV3, VGG19, DenseNet201, 

SqueezeNet, and MobileNet) were evaluated using transfer learning. Three experiments were 

conducted: lung segmentation using two U-Net models, classification using full X-ray images, 

and classification using segmented lung regions. ChexNet achieved the best performance on 

whole X-ray images, with an accuracy of 96.47%. However, classification using segmented 

lung images outperformed full-image classification, where DenseNet201 achieved 98.6% 

accuracy and strong performance across all metrics. Visualization techniques confirmed that 

CNNs primarily learned from lung regions, explaining the improved results. 

Furthermore, Noviandy et al. [12] addressed the challenge of TB diagnosis in low-resource 

settings by evaluating lightweight and explainable deep learning models for chest X-ray 

analysis. Three lightweight models—ShuffleNetV2, SqueezeNet, and MobileNetV3—were 

assessed for binary TB classification using a local dataset of 3008 X-ray images. Transfer 

learning was employed to enhance performance, and Grad-CAM was used to provide visual 

explanations of model decisions. MobileNetV3 and ShuffleNetV2 achieved perfect 

classification results, each attaining 100% accuracy. 

As well, Maheswari et al. [13] proposed a lightweight and interpretable shallow CNN for 

automated TB screening from chest X-ray images. In contrast to very deep CNN architectures, 

the study emphasized a simpler model to enhance diagnostic transparency and clinical 

applicability. The proposed shallow-CNN comprised four convolution–max pooling layers, 

with hyperparameters optimized using Bayesian optimization. The model achieved accuracy of 

95%. To further enhance model explainability, CAM and LIME were employed and compared 

with a state-of-the-art pre-trained DenseNet model. 

Lastly, Özkurt [14] investigated TB diagnosis using deep learning with a strong emphasis on 

explainable AI to improve trust and reliability in clinical applications. The dataset comprised 

chest X-ray images of both TB-positive and normal cases, including 700 publicly available TB 

images, an additional 2800 TB images accessible via the NIAID TB portal, and 3500 normal 

images. The proposed CNN architecture consisted of three convolutional layers was used for 

binary TB classification. Explainable AI techniques such as SHAP and LIME were applied to 

interpret model predictions and identify influential image features. 

 

The previous studies consistently demonstrate that deep learning–based approaches can achieve 

high accuracy in TB detection from chest X-ray images. The findings highlight that 

incorporating transfer learning, and data-efficient architectures significantly improves 

diagnostic performance, while lightweight and shallow CNNs can rival deeper models with 

reduced computational cost. Moreover, explainable AI techniques such as Grad-CAM, CAM, 

LIME, and SHAP play a crucial role in enhancing model transparency and clinical trust by 

localizing TB-related abnormalities. Collectively, these works emphasize the importance of 

balancing accuracy, efficiency, and interpretability to enable reliable and scalable AI-assisted 

TB screening, particularly in resource-constrained healthcare settings. 

This study utilizes an expanded dataset of 7208 chest X-ray images, created by merging two 

separate sources, with data augmentation applied to enhance model performance. In addition to 

improving diagnostic accuracy, an interpretability method—integrated gradients—is 

implemented to provide clear insights into the model’s decision-making. The study aims to 

achieve precise TB detection while emphasizing the importance of explanation techniques in 
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building clinician trust and understanding, thereby enhancing the transparency, reliability, and 

effectiveness of AI-driven TB screening tools. 

 

3. Methodology 

 

This study employed a deep learning approach to identify TB in chest X-ray scans, focusing on 

making the results more understandable through integrated gradient technique. The process 

involved categorizing the X-ray images into two groups: normal or TB. The key stages of this 

approach are illustrated in Figure 1. 

 

 
Figure 1. Method steps 

 

3.1. Dataset and preprocessing 

The dataset used in this study is a combination of two sources. The first dataset, obtained from 

Mendeley [15], contains 2494 chest X-ray images of TB patients and 514 normal chest X-ray 

images. The second dataset was compiled by [13] and consists of a well-organized collection 

of chest X-ray images—700 TB cases and 3500 normal cases—which is publicly available on 

Kaggle [16]. These two datasets were merged to form the final dataset used in this study, 

resulting in a total of 7208 images, comprising 3194 TB and 4014 normal images. Figure 2 

illustrates sample images from the combined dataset, showing examples of both TB and normal 

cases. 

All images were resized to a standardized resolution of 224 × 224 pixels and normalized. 

Additionally, 20% of the dataset was set aside for testing purposes. To enhance model 

generalization and reduce overfitting, augmentation techniques were applied during training. 

Random horizontal flip was used to simulate variations in image orientation by flipping images 

horizontally. Random rotation with a maximum angle of ±10 degrees. Additionally, contrast 

adjust employed introducing slight changes in image appearance that reflect real-world 

variability in X-ray imaging conditions. Together, these augmentations increase dataset 

diversity and improve the model’s robustness in clinical scenarios. 
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Figure 2. Sample from dataset 

 

3.2. Model training and evaluation   

A pre-trained CNN based on the VGG architecture—specifically VGG16—was employed as 

the backbone for feature extraction. The model was fine-tuned on the TB dataset, with its final 

fully connected layers modified to perform binary classification between TB and normal 

images. 

VGG16 [17] is a deep CNN architecture consists of 16 weight layers, including 13 

convolutional layers and 3 fully connected layers, followed by a softmax output layer. VGG16 

is known for its simplicity and uniform architecture, using small 3×3 convolutional filters and 

2×2 max-pooling layers throughout the network. VGG16 has been widely used in image 

classification and transfer learning tasks due to its strong performance and ease of 

implementation. Pre-trained versions of the model, especially those trained on the ImageNet 

dataset, are commonly used as feature extractors in various computer vision applications. 

The model was trained using the Cross-Entropy loss function and the Adam optimizer with a 

learning rate of 0.0001. Training was conducted with a batch size of 16, and early stopping was 

employed to prevent overfitting, halting the process after 15 epochs. The model's performance 

was assessed on a separate, unseen test set using standard evaluation metrics to provide a 

comprehensive understanding of its diagnostic effectiveness. Additionally, a confusion matrix 

was generated to further analyze the classification results. 

 

3.3. Explainability and visualization  

To enhance interpretability, integrated gradients was used to visualize the regions in the chest 

X-rays that influenced the model’s predictions. 

Integrated Gradients [18] is an attribution method used to explain the predictions of deep 

learning models. It works by quantifying the contribution of each input feature (such as pixels 

in an image) to the model's output. The method involves computing the integral of the model’s 

gradients as the input varies along a straight path from a baseline (often a black image or zero 

input) to the actual input. This provides a more reliable and theoretically grounded explanation 

compared to simple gradient-based methods, which can be noisy. The outputs were plotted in 

three-panel layouts: the original X-ray, the attribution heatmap, and an overlay of both. These 
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visualizations provided intuitive insights into model behavior and supported transparent 

decision-making. 

4. Results and Discussions 

The performance of the model during training is illustrated in Figure 3, which displays the 

training and validation accuracy and loss curves across epochs. 

 

 
Figure 3. Training curves 

 

During the early stages of training, specifically between epochs 3 and 6, the model exhibits 

signs of overfitting, as indicated by an increase in validation loss and a decrease in validation 

accuracy, despite continued improvement in training performance. This suggests that the model 

began memorizing the training data rather than learning patterns that generalize well to unseen 

data. However, after epoch 6 or 7, both the training and validation loss curves steadily decline 

and converge to low values, while accuracy for both sets rises to approximately 99%. This 

convergence indicates that the model was able to recover from the initial overfitting phase and 

ultimately generalize well. The final state—characterized by low validation loss and high 

validation accuracy—demonstrates effective training and strong overall performance. The 

model was evaluated on an unseen test set of chest X-ray images. The performance results are 

summarized in Table 1, which presents the classification metrics of the trained model across 

the two classes (Normal and TB). 

 

Table 1 Classification performance on the test set 

Accuracy Class Precision Recall F1-score Support 

0.9993 
Normal 0.9988 1.0000 0.9994 803 

TB 1.0000 0.9984 0.9992 639 

 

The model achieved an overall accuracy of 99.93%, indicating exceptional performance on the 

test set. For the Normal class, the model attained a precision of 0.9988 and a recall of 1.0000, 

resulting in an F1-score of 0.9994, with all 803 Normal cases correctly identified. For the TB 

class, the model achieved a perfect precision of 1.0000 and a recall of 0.9984, leading to an F1-

score of 0.9992, based on 639 samples. These metrics suggest a near-perfect balance between 

precision and recall for both classes, with minimal false positives and false negatives. The 
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consistently high scores across all metrics demonstrate the model’s strong capability to 

distinguish between TB and normal chest X-ray images, making it a reliable tool for automated 

TB screening. 

Figure 4 presents a confusion matrix, which quantifies the model's classification accuracy. It 

clearly shows a high number of true positives and true negatives. Specifically, 803 normal cases 

were correctly identified as normal (true negative), and 638 TB cases were correctly identified 

as TB (true positive). Crucially, there are zero false positives (no normal cases misclassified as 

TB) and only 1 false negative (one TB case misclassified as normal). This nearly perfect 

confusion matrix signifies exceptional accuracy and precision in distinguishing between normal 

and TB affected lungs. 

 

 
Figure 4. Confusion matrix 

 

Figure 5 illustrates the model's predictions on sample chest X-ray images, showing strong 

performance in detecting TB cases, all of which were correctly classified with 100% 

confidence. Among the normal cases, four were correctly identified, while one was 

misclassified as TB with full confidence—indicating a false positive. This suggests the model 

is highly sensitive to TB features but may occasionally over-predict TB in normal images. 

Overall, the model demonstrates excellent accuracy, particularly in identifying TB, though 

refinement is needed to reduce false positives in normal cases. 
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Figure 5. Sample of predictions 

 

 
Figure 6. Visualizing model decisions in TB detection 

 

 

Figure 6 showcases five sets of chest X-rays, each consisting of an original image, an attribution 

map, and a combined image displaying the true and predicted labels. All five examples 

consistently show true predictions, indicating that the model correctly identified TB in all these 

cases. The attribution maps, highlight the specific regions within the X-ray images that the 
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model focused on when making its TB prediction. These maps reveal areas of high importance, 

often corresponding to lung fields, where visual anomalies indicative of TB is likely present. 

The overlaid images in the bottom row further emphasize these critical regions by visually 

combining the original X-ray with the attribution heatmaps, providing a clear visual 

representation of what the model deemed most relevant for its accurate diagnosis of TB. This 

consistent and strong attribution to the lung areas across all five samples suggests that the model 

effectively learned to identify key pathological features associated with TB. 

 

5. Conclusion 

This study presented an interpretable deep learning approach for the automated detection of TB 

using chest X-ray images. By leveraging a CNN architecture alongside robust data 

augmentation techniques, the proposed system demonstrates strong performance in 

distinguishing between TB and normal cases. Beyond predictive accuracy, this work also 

emphasizes model transparency by integrating the integrated gradient technique to provide 

visual explanations for the network’s decisions. This is especially critical in medical imaging 

applications, where clinical trust and accountability are essential. Integrated gradient 

visualizations enabled clear localization of abnormal regions typically associated with TB 

pathology, offering clinicians an interpretable layer that supports diagnostic confidence and 

validation. The model’s strong performance and explainability highlight the practical potential 

of deep learning for TB screening, especially in settings with limited radiology resources. 

However, challenges like dataset variability and the need for broader validation remain. This 

study underscores the importance of combining accurate AI with explainable methods to 

improve early diagnosis and foster trust, advancing transparent and equitable AI-driven 

healthcare. 
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