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Abstract 
           In this research, we will present a study on the properties of fractional 

derivatives of power functions when the order of differentiation is a function of a 

different variable. We aim to determine how the variable order of differentiation 

affects the form of the derivative. 

Keywords: , Caputo's derivative, Gamma function, Fractional derivative, Fractional 

derivative of variable order and Power function.  

Introduction  

              Since the concept of generalizing ordinary derivatives from integer orders 

to fractional and fractional derivatives emerged in 1968 (Oldham& Spanier, 1974), 

studies and research in this field have not ceased. This generalization is 

significant in many scientific areas, such as: 

 Physics: Where fractional derivatives are used to describe dynamic and complex 

phenomena (Oldham& Spanier, 1974). 

Engineering: In system design and structural analysis. (Kakhki, et.al 2010).. 

Medicine: In modeling biological processes and chemical interactions ( Machado & 

Bates,2017). 

Economics: To analyze complex economic systems (Luo, et.al, 2018). 
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Computer Science: In signal and image processing (Arora, et.al, 2022)  

Both Samko and Ross (1993) presented a more extensive generalization of the 

fractional derivative. This generalization is the fractional derivative of variable 

order, where the order of the derivative is a function that may depend on the 

same spatial variable, the time variable, or another variable altogether. (Samko& 

Ross, 1993) 

Once this generalization emerged, studies in this field did not cease. Most 

definitions of fractional derivatives, such as Riemann-Liouville and Caputo, were 

generalized to the concept of fractional differentiation of variable order. 

 The fractional differentiation of variable order has been used in many important 

applications, such as: 

Modeling Complex Systems: In physics and engineering to describe systems with 

memory and hereditary properties (Coimbra, 2003). 

Control Theory: For designing controllers in dynamic systems with fractional 

dynamics (Patnaik, et.al, 2020). 

Signal Processing: In filtering and analyzing signals with non-integer order 

derivatives. (Ortigueira, 2006). 

Biological Systems: To model processes like diffusion and population dynamics 

(Jafari, et.al, 2021)  

Finance: In modeling stock prices and financial derivatives where traditional 

models fall short (Baz & Chacko, 2004) 

The fractional derivative of variable order using the Caputo concept: 

  The primary advantage of the Caputo concept is that the initial and boundary 

conditions for differential equations using the Caputo fractional derivative are 

similar to those for integer-order differential equations. This means that they can 

be derived in the same way (Sikora, 2020). 

Caputo's definition of the fractional derivative of variable order can be written as: 

  

𝐷𝛼(𝑡)𝑓(𝑥) =
1

𝛤(𝑛 − 𝛼(𝑡))
∫

𝑓(𝑛)(𝑠)𝑑𝑠

(𝑥 − 𝑠)𝛼(𝑡)−𝑛+1
      (1)

𝑥

𝑎

 

Where 𝑛 − 1 <∝ (𝑡) < 𝑛  (Sweilam & Almrawm, 2011). 

Therefore, when finding a derivative of a variable order, it is important to ensure 

that the function of the order is bounded. Note that the derivative here will be a 

function of two variables: the main variable of the function and the variable of the 

order function. 

Some properties of Caputo's derivative of variable order. 

The derivative of variable order using the Caputo definition has algebraic 

properties that are similar to those of the fractional formula such as: 
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(i) The linearity:  

𝐷𝛼(𝑡)(𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)) = 𝑎𝐷𝛼(𝑡)𝑓(𝑥) + 𝑏𝐷𝛼(𝑡)𝑔(𝑥) 

Where a and b are constant, and f and g are continuous functions. 

(ii) The Leibniz rule: 

𝐷𝛼(𝑡)(𝑓(𝑥)𝑔(𝑥)) = ∑ 𝑓(𝑘)(𝑥)𝐷𝛼(𝑡)−𝑘𝑔(𝑥)

∞

𝑘=0

 

Where f(x) and g(x) along with all its derivatives are continuous. 

(iii)  

𝐷𝛼(𝑡)(𝐷𝑚𝑓(𝑥)) = 𝐷𝛼(𝑡)+𝑚𝑓(𝑥), (𝑚 = 0,1,2, … ; 𝑛 − 1 <∝ (𝑡) < 𝑛).  

 

For more properties see (Podlubny, 1999), (Oldham& Spanier, 1974) 

 

3. Fractional variable order derivatives of the power function. 

           In this section the fractional variable order derivative of power functions   

are obtained as in the following theorem (Garrappa, et.al, 2019). The formula of 

the power function that we study is: 

f(x) = (x − a)v 

Where a, and v are real values. 

Theorem 

 If 𝑣   𝑎𝑛𝑑 𝑎   are real values, such that 𝑣 > −1 then  

𝐷∝(𝑡)(𝑥 − 𝑎)𝑣 = 

{

0      
𝛤(𝑣 + 1)

𝛤(𝑣 − 𝛼 + 1)
𝑛𝑜𝑛 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 

(𝑥 − 𝑎)𝑣−∝(𝑡)           
𝑣 ∈ {0,1, … , 𝑛 − 1}

 𝑣 > 𝑛 − 1
𝑜. 𝑤

 

Where 𝑛 − 1 <∝ (𝑡) < 𝑛. 

The proof:  

𝐷𝛼(𝑡)(𝑥 − 𝑎)𝑣 =
1

𝛤(𝑛 − 𝛼(𝑡))
∫

𝑓(𝑛)(𝑠 − 𝑎)𝑣

(𝑥 − 𝑠)𝛼(𝑡)−𝑛+1
𝑑𝑠

𝑥

𝑎

 

We know that, when n is integer value: 

𝑓(𝑛)(𝑡 − 𝑎)𝑣 = 𝑣(𝑣 − 1) … (𝑣 − 𝑛 + 1)(𝑡 − 𝑎)𝑣−𝑛 

=
𝛤(𝑣 + 1)

𝛤(𝑣 − 𝑛 + 1)
(𝑡 − 𝑎)𝑣−𝑛 

And, in the fractional case: 

𝐷𝛼(𝑥 − 𝑎)𝑣 =
𝛤(𝑣 + 1)

𝛤(𝑛 − 𝛼)𝛤(𝑣 − 𝑛 + 1)
∫

(𝑡 − 𝑎)𝑣−𝑛

(𝑥 − 𝑡)𝛼−𝑛+1
𝑑𝑡

𝑥

𝑎

 

So, 
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𝐷𝛼(𝑡)(𝑥 − 𝑎)𝑣 =
𝛤(𝑣 + 1)

𝛤(𝑛 − 𝛼(𝑡))𝛤(𝑣 − 𝑛 + 1)
∫

(𝑠 − 𝑎)𝑣−𝑛

(𝑥 − 𝑠)𝛼(𝑡)−𝑛+1
𝑑𝑠

𝑥

𝑎

 

 

Let 𝑠 = 𝑎 + 𝑧(𝑥 − 𝑎), then  

When 𝑠 = 𝑎 , z=0, and if 𝑠 = 𝑥, 𝑧 = 1. 

Hence, 

(𝑥 − 𝑠)𝛼(𝑡)−𝑛+1 = (𝑥 − 𝑎)𝛼(𝑡)−𝑛+1(1 − 𝑧)𝛼(𝑡)−𝑛+1 

And 

(𝑠 − 𝑎)𝑣−𝑛 = 𝑧𝑣−𝑛(𝑥 − 𝑎)𝑣−𝑛 

Then 

𝐷𝛼(𝑡)(𝑥 − 𝑎)𝑣 =
𝛤(𝑣 + 1)

𝛤(𝑛 − 𝛼(𝑡))𝛤(𝑣 − 𝑛 + 1)
∫

𝑧𝑣−𝑛(𝑥 − 𝑎)𝑣−𝑛 

(𝑥 − 𝑎)𝛼(𝑡)−𝑛+1(1 − 𝑧)𝛼(𝑡)−𝑛+1

1

0

 

. (𝑥 − 𝑎)𝑑𝑧 

 

=
𝛤(𝑣 + 1)(𝑥 − 𝑎)𝑣−𝛼(𝑡)

𝛤(𝑣 − 𝛼(𝑡))𝛤(𝑣 − 𝑛 + 1)
 

. ∫ 𝑧𝑣−𝑛 (1 − 𝑧)𝑛−𝛼(𝑡)−1𝑑𝑧
1

0

 

=
𝛤(𝑣 + 1)(𝑥 − 𝑎)𝑣−𝛼(𝑡)

𝛤(𝑣 − 𝛼(𝑡) + 1)𝛤(𝑣 − 𝑛 + 1)
 

. 𝐵(𝑣 − 𝑛 + 1, 𝑛 − 𝛼(𝑡)) 

=
𝛤(𝑣 + 1)

𝛤(𝑣 − 𝛼(𝑡) + 1)
(𝑥 − 𝑎)𝑣−𝛼(𝑡).  (2) 

As a special case  

If ∝ (𝑡) > 0 , 𝑎𝑛𝑑 𝑛 − 1 <∝ (𝑡) < 𝑛 . then for any 𝑘 ∈ ℕ: 

D∝(t)xk = {

0

∑
k!

(k − l)! (l−∝ (t) + 1)
xl−∝(t)

k

l=n

      if k <∝ (𝑡)
             o. w 

     (3) 

Challenges in Determining the Gamma Function for Variable Order 

Derivatives 

         It's important to remember that finding the fractional derivative of variable 

order involves computing the value of the Gamma function for the order of the 

derivative, which is a challenging task for researchers in this field. 

This problem can be resolve by using one of the following methods: 

Using Gamma Function Approximations 

 Approximation Using Series: Taylor series or other series can be used to 

approximate the Gamma function at specific points (Fitzpatrick, 2000). 
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 Numerical Methods: Methods such as the Trapezoidal rule or Simpson's rule 

can be used to estimate the value of the Gamma function (Gil, 2007). 

 Numerical Analysis 

 Numerical Techniques: Include techniques such as Newton-Raphson 

algorithms or iterative methods that can be used to compute fractional 

derivatives )Press, et..al, 1992). 

 Special Functions: Some software provides special functions for numerically 

calculating fractional derivatives. (Gil, et.al, 2007). 

Symmetry Methods 

 Asymptotic Analysis: Using techniques such as symmetry in functions or 

derivatives to obtain approximate results ).  Min, et.la, 2023) 

 Transformations: Some mathematical transformations may help simplify 

calculation (Andrews, et.al, 1999). 

All the previous points are potential topics for future research papers. However, in 

this study, we will present an illustration of the fractional derivative of variable 

order by calculating it point wise within the domain of the order function, and 

then using MATLAB to plot this derivative. 

Analysis of Non-negativity and Boundedness of the Order Function 

         In the context of fractional calculus, it is essential to analyze the properties 

of the order function to ensure the existence of the fractional variable order 

derivative. Two critical conditions must be satisfied: non-negativity and 

boundedness. 

Non-negativity: The order function must be non-negative, meaning that its values 

should be greater than or equal to zero. This condition is crucial because negative 

values could lead to undefined behavior in the calculation of the Gamma 

function.  

Boundedness: Additionally, the order function must be bounded, specifically less 

than the order of the power function involved. This restriction ensures that the 

Gamma function can be computed effectively, preventing potential divergences or 

singularities in the calculations. These conditions are necessary for the proper 

definition and computation of the fractional derivative of variable order, allowing 

researchers to explore its applications in various fields effectively. 

6. The examples 

Example (1): in this example we use Caputo's definition to fine the fractional of 

variable order to the function𝑓(𝑥) = 𝑥2, when the order is the function ∝ (𝑡) =

𝑠𝑖𝑛2(𝑡). 

By using (3), and as is known that 0 ≤ 𝑠𝑖𝑛2(𝑡) ≤ 1, then 

D𝑠𝑖𝑛2(𝑡)x2 =
2!

(2 − l)! 𝛤(l − 𝑠𝑖𝑛2(𝑡) + 1)
  xl−𝑠𝑖𝑛2(𝑡)      
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=
2

𝛤(2 − 𝑠𝑖𝑛2(𝑡))
 xl−𝑠𝑖𝑛2(𝑡) 

The figure (1) shows the graph of the derivative of fractional variable order. As 

expected, the graph of the derivative transitions from the quadratic function, 

which is obtained when the order is equal to zero, to a linear form that  shows its 

maximum value of one. 

 

Figure. 1 

 

Example 2: The current example relates to finding the derivative of a power 

function (𝑥) = (𝑥 − 2)3.5 , when the order of the derivative is the function 

𝛼(𝑡) = 2 − 𝑐𝑜𝑠2(𝑡). 

In this example, to ensure the convergence of the solution and to make it 

defined in the set of real numbers, we will assume that the values of 𝑥 are 

greater than 2, for more details, see (Almrawm & Ajaib, 2024) 

By using (2), we have 

D2−𝑐𝑜𝑠2(𝑡)(𝑥 − 2)3.5 =
𝛤(3.5 + 1)

𝛤(3.5 − 2 + 𝑐𝑜𝑠2(𝑡) + 1)
 

. (𝑥 − 2)3.5−2+𝑐𝑜𝑠2(𝑡).   

=
𝛤(4.5)

𝛤(2.5 + 𝑐𝑜𝑠2(𝑡))
(𝑥 − 2)1.5+𝑐𝑜𝑠2(𝑡) 

The figure (2) shows the graph of the derivative of fractional variable order 

that was studied in this example.. 
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Figure. 2 

 

Conclusion: 

            Variable order fractional derivatives have recently gained attention from 

researchers due to their significance in various applications. This study focuses 

on variable order fractional derivatives of power functions. We treat the order 

function as a variable separate from the power function variable, which can 

represent time or any other variable that may affect the order of the derivative. We 

address some challenges that researchers may encounter in this field and propose 

possible solutions. Additionally, we illustrate with examples and graphs how the 

fractional derivative changes with variations in the order function. 
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